Earth

Image of Earth. Credit: NASA
Image of Earth. Credit: NASA

Earth is an ocean planet. Our home world’s abundance of water — and life — makes it unique in our solar system. Other planets, plus a few moons, have ice, atmospheres, seasons and even weather, but only on Earth does the whole complicated mix come together in a way that encourages life — and lots of it.

Earth is the third planet from the Sun, and the densest and fifth-largest of the eight planets in the Solar System. It is also the largest of the Solar System’s four terrestrial planets. It is sometimes referred to as the world or the Blue Planet.

Earth formed approximately 4.54 billion years ago, and life appeared on its surface within its first billion years. Earth’s biosphere then significantly altered the atmospheric and other basic physical conditions, which enabled the proliferation of organisms as well as the formation of the ozone layer, which together with Earth’s magnetic field blocked harmful solar radiation, and permitted formerly ocean-confined life to move safely to land. The physical properties of the Earth, as well as its geological history and orbit, have allowed life to persist. Estimates on how much longer the planet will be able to continue to support life range from 500 million years (myr), to as long as 2.3 billion years (byr).

Earth’s lithosphere is divided into several rigid segments, or tectonic plates, that migrate across the surface over periods of many millions of years. About 71% of the surface is covered by salt water oceans, with the remainder consisting of continents and islands which together have many lakes and other sources of water that contribute to the hydrosphere. Earth’s poles are mostly covered with ice that is the solid ice of the Antarctic ice sheet and the sea ice that is the polar ice packs. The planet’s interior remains active, with a solid iron inner core, a liquid outer core that generates the magnetic field, and a thick layer of relatively solid mantle.

Earth gravitationally interacts with other objects in space, especially the Sun and the Moon. During one orbit around the Sun, the Earth rotates about its own axis 366.26 times, creating 365.26 solar days, or one sidereal year. The Earth’s axis of rotation is tilted 23.4° away from the perpendicular of its orbital plane, producing seasonal variations on the planet’s surface with a period of one tropical year (365.24 solar days).

The Moon is Earth’s only natural satellite. It began orbiting the Earth about 4.53 billion years ago (bya). The Moon’s gravitational interaction with Earth stimulates ocean tides, stabilizes the axial tilt, and gradually slows the planet’s rotation. The planet is home to millions of species of life, including humans. Both the mineral resources of the planet and the products of the biosphere contribute resources that are used to support a global human population. These inhabitants are grouped into about 200 independent sovereign states, which interact through diplomacy, travel, trade, and military action. Human cultures have developed many views of the planet, including its personification as a planetary deity, its shape as flat, its position as the center of the universe, and in the modern Gaia Principle, as a single, self-regulating organism in its own right.


Formation of Earth

The earliest material found in the Solar System is dated to 4.5672±0.0006 bya; therefore, it is inferred that the Earth must have been formed by accretion around this time. By 4.54±0.04 bya the primordial Earth had formed. The formation and evolution of the Solar System bodies occurred in tandem with the Sun. In theory a solar nebula partitions a volume out of a molecular cloud by gravitational collapse, which begins to spin and flatten into a circumstellar disk, and then the planets grow out of that in tandem with the star. A nebula contains gas, ice grains and dust (including primordial nuclides). In nebular theory planetesimals commence forming as particulate accrues by cohesive clumping and then by gravity. The assembly of the primordial Earth proceeded for 10–20 myr. The Moon formed shortly thereafter, about 4.53 bya.

The Moon’s formation remains debated. The working hypothesis is that it formed by accretion from material loosed from the Earth after a Mars-sized object dubbed Theia impacted with Earth. The model, however, is not self-consistent. In this scenario, the mass of Theia is 10% of the Earth’s mass, it impacts with the Earth in a glancing blow, and some of its mass merges with the Earth. Between approximately 3.8 and 4.1 bya, numerous asteroid impacts during the Late Heavy Bombardment caused significant changes to the greater surface environment of the Moon, and by inference, to the Earth. Earth’s atmosphere and oceans formed by volcanic activity and outgassing that included water vapor. The origin of the world’s oceans was condensation augmented by water and ice delivered by asteroids, proto-planets, and comets. In this model, atmospheric “greenhouse gases” kept the oceans from freezing while the newly forming Sun was only at 70% luminosity. By 3.5 bya, the Earth’s magnetic field was established, which helped prevent the atmosphere from being stripped away by the solar wind.

A crust formed when the molten outer layer of the planet Earth cooled to form a solid as the accumulated water vapor began to act in the atmosphere. The two models that explain land mass propose either a steady growth to the present-day forms or, more likely, a rapid growth early in Earth history followed by a long-term steady continental area. Continents formed by plate tectonics, a process ultimately driven by the continuous loss of heat from the earth’s interior. On time scales lasting hundreds of millions of years, the supercontinents have formed and broken up three times. Roughly 750 mya (million years ago), one of the earliest known supercontinents, Rodinia, began to break apart. The continents later recombined to form Pannotia, 600–540 mya, then finally Pangaea, which also broke apart 180 mya.


Shape

The shape of the Earth approximates an oblate spheroid, a sphere flattened along the axis from pole to pole such that there is a bulge around the equator. This bulge results from the rotation of the Earth, and causes the diameter at the equator to be 43 km (kilometer) larger than the pole-to-pole diameter. For this reason the furthest point on the surface from the Earth’s center of mass is the Chimborazo volcano in Ecuador. The average diameter of the reference spheroid is about 12,742 km, which is approximately 40,000 km/π, as the meter was originally defined as 1/10,000,000 of the distance from the equator to the North Pole through Paris, France.

Local topography deviates from this idealized spheroid, although on a global scale, these deviations are small: Earth has a tolerance of about one part in about 584, or 0.17%, from the reference spheroid, which is less than the 0.22% tolerance allowed in billiard balls. The largest local deviations in the rocky surface of the Earth are Mount Everest (8,848 m above local sea level) and the Mariana Trench (10,911 m below local sea level). Due to the equatorial bulge, the surface locations farthest from the center of the Earth are the summits of Mount Chimborazo in Ecuador and Huascarán in Peru.


Chemical Composition

The mass of the Earth is approximately 5.98×1024 kg. It is composed mostly of iron (32.1%), oxygen (30.1%), silicon (15.1%), magnesium (13.9%), sulfur (2.9%), nickel (1.8%), calcium (1.5%), and aluminium (1.4%); with the remaining 1.2% consisting of trace amounts of other elements. Due to mass segregation, the core region is believed to be primarily composed of iron (88.8%), with smaller amounts of nickel (5.8%), sulfur (4.5%), and less than 1% trace elements.

The geochemist F. W. Clarke calculated that a little more than 47% of the Earth’s crust consists of oxygen. The more common rock constituents of the Earth’s crust are nearly all oxides; chlorine, sulfur and fluorine are the only important exceptions to this and their total amount in any rock is usually much less than 1%. The principal oxides are silica, alumina, iron oxides, lime, magnesia, potash and soda. The silica functions principally as an acid, forming silicates, and all the commonest minerals of igneous rocks are of this nature. From a computation based on 1,672 analyses of all kinds of rocks, Clarke deduced that 99.22% were composed of 11 oxides (see the table at right), with the other constituents occurring in minute quantities.


Internal Structure

The interior of the Earth, like that of the other terrestrial planets, is divided into layers by their chemical or physical (rheological) properties, but unlike the other terrestrial planets, it has a distinct outer and inner core. The outer layer of the Earth is a chemically distinct silicate solid crust, which is underlain by a highly viscous solid mantle. The crust is separated from the mantle by the Mohorovičić discontinuity, and the thickness of the crust varies: averaging 6 km (kilometers) under the oceans and 30-50 km on the continents. The crust and the cold, rigid, top of the upper mantle are collectively known as the lithosphere, and it is of the lithosphere that the tectonic plates are comprised. Beneath the lithosphere is the asthenosphere, a relatively low-viscosity layer on which the lithosphere rides. Important changes in crystal structure within the mantle occur at 410 and 660 km below the surface, spanning a transition zone that separates the upper and lower mantle. Beneath the mantle, an extremely low viscosity liquid outer core lies above a solid inner core. The inner core may rotate at a slightly higher angular velocity than the remainder of the planet, advancing by 0.1–0.5° per year.

Earth cutaway from core to exosphere. Not to scale. Credit: Wikipedia
Earth cutaway from core to exosphere. Not to scale. Credit: Wikipedia

Orbit and Rotation

Earth’s rotation period relative to the Sun—its mean solar day—is 86,400 seconds of mean solar time (86,400.0025 SI seconds). As the Earth’s solar day is now slightly longer than it was during the 19th century due to tidal acceleration, each day varies between 0 and 2 SI ms longer.

Earth’s rotation period relative to the fixed stars, called its stellar day by the International Earth Rotation and Reference Systems Service (IERS), is 86,164.098903691 seconds of mean solar time (UT1), or 23h 56m 4.098903691s. Earth’s rotation period relative to the precessing or moving mean vernal equinox, misnamed its sidereal day, is 86,164.09053083288 seconds of mean solar time (UT1) (23h 56m 4.09053083288s) as of 1982. Thus the sidereal day is shorter than the stellar day by about 8.4 ms. The length of the mean solar day in SI seconds is available from the IERS for the periods 1623–2005 and 1962–2005.

Apart from meteors within the atmosphere and low-orbiting satellites, the main apparent motion of celestial bodies in the Earth’s sky is to the west at a rate of 15°/h = 15’/min. For bodies near the celestial equator, this is equivalent to an apparent diameter of the Sun or Moon every two minutes; from the planet’s surface, the apparent sizes of the Sun and the Moon are approximately the same.


Orbit

Earth orbits the Sun at an average distance of about 150 million kilometers every 365.2564 mean solar days, or one sidereal year. From Earth, this gives an apparent movement of the Sun eastward with respect to the stars at a rate of about 1°/day, which is one apparent Sun or Moon diameter every 12 hours. Due to this motion, on average it takes 24 hours—a solar day—for Earth to complete a full rotation about its axis so that the Sun returns to the meridian. The orbital speed of the Earth averages about 29.8 km/s (107,000 km/h), which is fast enough to travel a distance equal to the planet’s diameter, about 12,742 km, in seven minutes, and the distance to the Moon, 384,000 km, in about 3.5 hours.

The Moon revolves with the Earth around a common barycenter every 27.32 days relative to the background stars. When combined with the Earth–Moon system’s common revolution around the Sun, the period of the synodic month, from new moon to new moon, is 29.53 days. Viewed from the celestial north pole, the motion of Earth, the Moon and their axial rotations are all counterclockwise. Viewed from a vantage point above the north poles of both the Sun and the Earth, the Earth revolves in a counterclockwise direction about the Sun. The orbital and axial planes are not precisely aligned: Earth’s axis is tilted some 23.4 degrees from the perpendicular to the Earth–Sun plane (the ecliptic), and the Earth–Moon plane is tilted up to ±5.1 degrees against the Earth–Sun plane. Without this tilt, there would be an eclipse every two weeks, alternating between lunar eclipses and solar eclipses.

The Hill sphere, or gravitational sphere of influence, of the Earth is about 1.5 Gm or 1,500,000 km in radius. This is the maximum distance at which the Earth’s gravitational influence is stronger than the more distant Sun and planets. Objects must orbit the Earth within this radius, or they can become unbound by the gravitational perturbation of the Sun.

Earth, along with the Solar System, is situated in the Milky Way galaxy and orbits about 28,000 light years from the center of the galaxy. It is currently about 20 light years above the galactic plane in the Orion spiral arm.

Earth's axial tilt (or obliquity) and its relation to the rotation axis and plane of orbit. Credit: NASA
Earth’s axial tilt (or obliquity) and its relation to the rotation axis and plane of orbit. Credit: NASA

Axis Tilt and Seasons

Due to the axial tilt of the Earth, the amount of sunlight reaching any given point on the surface varies over the course of the year. This causes seasonal change in climate, with summer in the northern hemisphere occurring when the North Pole is pointing toward the Sun, and winter taking place when the pole is pointed away. During the summer, the day lasts longer and the Sun climbs higher in the sky. In winter, the climate becomes generally cooler and the days shorter. Above the Arctic Circle, an extreme case is reached where there is no daylight at all for part of the year—a polar night. In the southern hemisphere the situation is exactly reversed, with the South Pole oriented opposite the direction of the North Pole.

By astronomical convention, the four seasons are determined by the solstices—the point in the orbit of maximum axial tilt toward or away from the Sun—and the equinoxes, when the direction of the tilt and the direction to the Sun are perpendicular. In the northern hemisphere, Winter Solstice occurs on about December 21, Summer Solstice is near June 21, Spring Equinox is around March 20 and Autumnal Equinox is about September 23. In the Southern hemisphere, the situation is reversed, with the Summer and Winter Solstices exchanged and the Spring and Autumnal Equinox dates switched.

The angle of the Earth’s tilt is relatively stable over long periods of time. The tilt does undergo nutation; a slight, irregular motion with a main period of 18.6 years. The orientation (rather than the angle) of the Earth’s axis also changes over time, precessing around in a complete circle over each 25,800 year cycle; this precession is the reason for the difference between a sidereal year and a tropical year. Both of these motions are caused by the varying attraction of the Sun and Moon on the Earth’s equatorial bulge. From the perspective of the Earth, the poles also migrate a few meters across the surface. This polar motion has multiple, cyclical components, which collectively are termed quasiperiodic motion. In addition to an annual component to this motion, there is a 14-month cycle called the Chandler wobble. The rotational velocity of the Earth also varies in a phenomenon known as length of day variation.

In modern times, Earth’s perihelion occurs around January 3, and the aphelion around July 4. These dates change over time due to precession and other orbital factors, which follow cyclical patterns known as Milankovitch cycles. The changing Earth–Sun distance causes an increase of about 6.9%[note 15] in solar energy reaching the Earth at perihelion relative to aphelion. Since the southern hemisphere is tilted toward the Sun at about the same time that the Earth reaches the closest approach to the Sun, the southern hemisphere receives slightly more energy from the Sun than does the northern over the course of a year. This effect is much less significant than the total energy change due to the axial tilt, and most of the excess energy is absorbed by the higher proportion of water in the southern hemisphere.

Discovered By
Known by the Ancients
Date of Discovery
Unknown
Orbit Size Around Sun (semi-major axis)
Metric: 149,598,262 km
English: 92,956,050 miles
Scientific Notation: 1.4959826 x 108 km (1.000 A.U.)
Perihelion (closest)
Metric: 147,098,291 km
English: 91,402,640 miles
Scientific Notation: 1.47098 x 108 km (9.833 x 10-1 A.U.)
Aphelion (farthest)
Metric: 152,098,233 km
English: 94,509,460 miles
Scientific Notation: 1.52098 x 108 km (1.017 A.U.)
Sidereal Orbit Period (Length of Year)
1.0000174 Earth years
365.26 Earth days
Orbit Circumference
Metric: 939,887,974 km
English: 584,019,311 miles
Scientific Notation: 9.399 x 108 km
Average Orbit Velocity
Metric: 107,218 km/h
English: 66,622 mph
Scientific Notation: 2.9783 x 104 m/s
Orbit Eccentricity
0.01671123
Orbit Inclination
0.00005 degrees
Equatorial Inclination to Orbit
23.4393 degrees
Mean Radius
Metric: 6,371.00 km
English: 3,958.8 miles
Scientific Notation: 6.3710 x 103 km
Equatorial Circumference
Metric: 40,030.2 km
English: 24,873.6 miles
Scientific Notation: 4.00302 x 104 km
Volume
Metric: 1,083,206,916,846 km3
English: 259,875,159,532 mi3
Scientific Notation: 1.08321 x 1012 km3
Mass
Metric: 5,972,190,000,000,000,000,000,000 kg
Scientific Notation: 5.9722 x 1024 kg
Density
Metric: 5.513 g/cm3
Surface Area
Metric: 510,064,472 km2
English: 196,936,994 square miles
Scientific Notation: 5.1006 x 108 km2
Surface Gravity
Metric: 9.80665 m/s2
English: 32.041 ft/s2
Escape Velocity
Metric: 40,284 km/h
English: 25,031 mph
Scientific Notation: 1.119 x 104 m/s
Sidereal Rotation Period (Length of Day)
0.99726968 Earth days
23.934 hours
Minimum/Maximum Surface Temperature
Metric: -88/58 (min/max) °C
English: -126/136 (min/max) °F
Scientific Notation: 185/331 (min/max) K
Atmospheric Constituents
Nitrogen, Oxygen
Scientific Notation: N2, O2
By Comparison: N2 is 80% of Earth’s air and is a crucial element in DNA.