Stable Habitable Zone


The habitable zone (HZ, categorized by the Planetary Habitability Index) is a shell-shaped region of space surrounding a star in which a planet could maintain liquid water on its surface. After an energy source, liquid water is considered the most important ingredient for life, considering how integral it is to all life systems on Earth. This may reflect the known dependence of life on water; however, if life is discovered in the absence of water, the definition of an HZ may have to be greatly expanded.

A “stable” HZ implies two factors. First, the range of an HZ should not vary greatly over time. All stars increase in luminosity as they age, and a given HZ thus migrates outwards, but if this happens too quickly (for example, with a super-massive star) planets may only have a brief window inside the HZ and a correspondingly smaller chance of developing life. Calculating an HZ range and its long-term movement is never straightforward, as negative feedback loops such as the CNO cycle will tend to offset the increases in luminosity. Assumptions made about atmospheric conditions and geology thus have as great an impact on a putative HZ range as does stellar evolution: the proposed parameters of the Sun’s HZ, for example, have fluctuated greatly.

Second, no large-mass body such as a gas giant should be present in or relatively close to the HZ, thus disrupting the formation of Earth-like bodies. The matter in the asteroid belt, for example, appears to have been unable to accrete into a planet due to orbital resonances with Jupiter; if the giant had appeared in the region that is now between the orbits of Venus and Mars, Earth would almost certainly not have developed in its present form. However a gas giant inside the HZ might have habitable moons under the right conditions.

In the Solar System, the inner planets are terrestrial, and the outer ones are gas giants, but discoveries of extrasolar planets suggest that this arrangement may not be at all common: numerous Jupiter-sized bodies have been found in close orbit about their primary, disrupting potential HZs. However, present data for extrasolar planets is likely to be skewed towards that type (large planets in close orbits) because they are far easier to identify; thus it remains to be seen which type of planetary system is the norm, or indeed if there is one.

Leave a Reply